Surface dose measurements with commonly used detectors: a consistent thickness correction method
نویسندگان
چکیده
The purpose of this study was to review application of a consistent correction method for the solid state detectors, such as thermoluminescent dosimeters (chips (cTLD) and powder (pTLD)), optically stimulated detectors (both closed (OSL) and open (eOSL)), and radiochromic (EBT2) and radiographic (EDR2) films. In addition, to compare measured surface dose using an extrapolation ionization chamber (PTW 30-360) with other parallel plate chambers RMI-449 (Attix), Capintec PS-033, PTW 30-329 (Markus) and Memorial. Measurements of surface dose for 6MV photons with parallel plate chambers were used to establish a baseline. cTLD, OSLs, EDR2, and EBT2 measurements were corrected using a method which involved irradiation of three dosimeter stacks, followed by linear extrapolation of individual dosimeter measurements to zero thickness. We determined the magnitude of correction for each detector and compared our results against an alternative correction method based on effective thickness. All uncorrected surface dose measurements exhibited overresponse, compared with the extrapolation chamber data, except for the Attix chamber. The closest match was obtained with the Attix chamber (-0.1%), followed by pTLD (0.5%), Capintec (4.5%), Memorial (7.3%), Markus (10%), cTLD (11.8%), eOSL (12.8%), EBT2 (14%), EDR2 (14.8%), and OSL (26%). Application of published ionization chamber corrections brought all the parallel plate results to within 1% of the extrapolation chamber. The extrapolation method corrected all solid-state detector results to within 2% of baseline, except the OSLs. Extrapolation of dose using a simple three-detector stack has been demonstrated to provide thickness corrections for cTLD, eOSLs, EBT2, and EDR2 which can then be used for surface dose measurements. Standard OSLs are not recommended for surface dose measurement. The effective thickness method suffers from the subjectivity inherent in the inclusion of measured percentage depth-dose curves and is not recommended for these types of measurements.
منابع مشابه
Achievable accuracy in brain tumors by in vivo dosimetry with diode detectors
ABSTRACT Background: In vivo measurements of applied dose during radiotherapy treatment, is important to ensure accurate dose delivery to patients. Uncertainty in dose delivery should fall within ±5% of the prescribed dose as recommended by ICRU. Assessment of dose for radiotherapy applications performed with various types of detectors. In this study, semiconductor diodes were used which have s...
متن کاملVerification of the Accuracy of the Delivered Dose in Brain Tumors by in Vivo Dosimetry Using Diode Detectors
Introduction: During radiotherapy, high accuracy in the dose delivery is required because there is a strong relationship between the absorbed dose, local tumor control and particularly the normal tissue damage. In many institutions, in vivo dosimetry using diodes is performed to check the actual dose delivered. In general, the uncertainty in the dose delivered should fall within ± 5% of the...
متن کاملDiode calibration for dose determination in total body irradiation
Background: Total Body Irradiation (TBI) is different from standard radiotherapy in many aspects, so it is not easy to predict the delivered dose to the patient under TBI treatment. Diode dosimetry procedures for surface dose reading can help to define variations of the actually delivered dose from the prescribed one. The aim of this study was to describe the measurements made to calib...
متن کاملEntrance dose measurements for in‐vivo diode dosimetry: Comparison of correction factors for two types of commercial silicon diode detectors
Silicon diode dosimeters have been used routinely for in-vivo dosimetry. Despite their popularity, an appropriate implementation of an in-vivo dosimetry program using diode detectors remains a challenge for clinical physicists. One common approach is to relate the diode readout to the entrance dose, that is, dose to the reference depth of maximum dose such as d(max) for the 10x10 cm(2) field. V...
متن کاملProton dose distribution measurements using a MOSFET detector with a simple dose‐weighted correction method for LET effects
We experimentally evaluated the proton beam dose reproducibility, sensitivity, angular dependence and depth-dose relationships for a new Metal Oxide Semiconductor Field Effect Transistor (MOSFET) detector. The detector was fabricated with a thinner oxide layer and was operated at high-bias voltages. In order to accurately measure dose distributions, we developed a practical method for correctin...
متن کامل